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Abstract. Nitric acid production plants emit small amounts of nitrogen oxides (NOx) to the environment. As the regulatory 

authorities demand the reduction of the resulting air pollution, existing plants are looking for economical ways to comply with 
this demand. Several Artificial Neural Networks (ANN) models were trained from several months of operating plant data to 
predict the NOx concentration in the tail gas, and their total amount emitted the environment. The training of the ANN model 
was done by the Guterman-Boger algorithm set that generates a non-random initial connection weights, suggests a small number 
of hidden neurons, avoids, and escapes from, local minima encountered during the training. The ANN models gave small errors, 
0.6% relative error on the NOx concentration prediction and 0.006 kg/hour on daily emission in the 20-45 kg NOx/hour range.  
Knowledge extraction from the trained ANN models revealed the underlying relationships between the plant operating variables 
and the NOx emission rate, especially the beneficial effect of cooling the absorbed gas and reticulating liquids in the absorption 

towers. Clustering the data by the patterns of the hidden neurons outputs of auto-associative ANN models of the same data 
revealed interesting insights.  
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Introduction 
 Nitric acid production plants emit small amounts of nitrogen oxides (NOx) to the environment. As 

the regulatory authorities demand the reduction of the resulting air pollution, existing plants are looking for 

economical ways to comply with this demand. One way is to find out if there is a potential to optimize the current 
operating policies, by creating a model of the plant operation relationship with the NOx emmission.  The suggested 

use of artificial neural networks (ANN) modeling techniques in industrial plants, in which the model is learned from 

data of the plant behavior, often arouses strong emotions. ”No complicated equations! No man-years of development 

effort!” cheer the proponents. “No detailed equations? No reliability!” counter the opponents. 

 Even so, the use of ANN modeling in industrial plants is spreading, as other modeling methods are costly, 

both in resources and time, to fully meets the requirements of fault diagnosis or plant operation optimization. 

“Soft sensor” is the accepted name for ANN model (or other model) that estimates the value of a plant 

variable based on other plant measurements. Such sensor, estimating the C5 impurity at the top of a distillation 

tower is described in [1]. Refinary NOx emission modeled by an ANN is described in a recent paper [2].   

An often-cited opposition to the use of ANN modeling in industrial diagnostics is the lack of “explanation” 

facility, the ability of the operator to understand the basis of the ANN recommendations. This paper shows that the 
“black-box” image of ANN model is misleading, and the trained ANN model can be analyzed to correctly explain 

the relationships between the plant operating variables and the NOx emission rate. 

The structure of the paper is as follows: A brief description of the nitric acid plant, a review of the Guterman-

Boger algorithms for large-scale ANN modeling, the Causal Index (CI) method of analyzing trained ANN, and the 

use of the hidden neurons’ output values as clustering tool.  Because of non-disclosure agreements, the exact details 

of the plant are withheld.  

 

1. A Brief Description of the Nitric Acid Plant 

 

 The structure of the nitric acid plant is formed from two major units – a reactor in which ammonia gas is 

reacted with compressed air, resulting in the formation of nitrogen dioxide NO2. The resulting high-temperature 

gaseous stream, that contain also the nitrogen, is used to make steam, and then is cooled before the second major 

unit, the absorption of the NO2 by water in two absorption towers. As the reaction of the NO2 with water results in 

some formation of nitrogen oxide, NO, that is not absorbed by water; additional air is fed to the first absorption 

tower to re-oxidize the NO to the absorbable NO2. The equations governing the gas reactions and absorption are 



described in [3]. The gas exiting from the second absorption tower is sent to an expander, to utilize the high 

pressure, and then to the plant stack. 

  The allowed limit of the mixed nitrogen oxide species, NOx, in the “tail gas” was 400 ppm, and the plant 

was required to meet a reduced limit of 200 ppm. An additional reactor was needed to achieve this NOx 

concentration reduction, at great expense. Before deciding on this reactor, the plant management engaged the author 

to develop a model of the plant behavior, to find if changes in the plant operating variables would be able to achieve 
the required NOx emission reduction. 

  The chief plant operating engineer provided a database of 40 plant instrument measurements, saved every 

5 minutes by the process computer, during the preceding six months. Included in this database was the measured 

NOx concentration in the tail gas that was to be the output of the ANN model. 
  

3. A Short Overview of Artificial Neural Networks Modeling 

 
  An ANN model is trained by learning from known examples. A network of two layers of simple mathematical 

“neurons” is connected by weights. Data inputs are connected to the neurons in the first layer (called “hidden” 
neurons), which are connected in turn to the second layer of “output” neurons. Adjusting the values of the weights 

between the “neurons” during the training of the ANN is done by “back-propagation” of the errors between the 

output neurons and the known data outputs. Once the ANN is trained, it is verified by presenting examples not used 

in the training. The ANN may then be used to generate model outputs from the new examples presented to it. More 

information can be found in many books, such as [4] and journal articles, and in a review of the ANN literature, 

which is published in the comp.ai.neural-nets discussion group [5].    

  There are several obstacles in applying ANN to systems containing a large number of inputs and outputs. Most 

ANN training algorithms need thousands of repeated presentations (“epochs”) of the training examples to finally 

achieve small modeling errors. Large ANN models tend to get stuck in local minima during the training. As most 

ANN training starts from random initial connection weight sets, and the number of neurons in the hidden layer are 

usually determined by heuristic rules, many re-training trials are needed to achieve good models. The Guterman-
Boger (GB) training algorithm set [6] can easily train large scale ANN models, as it starts from non-random initial 

connection weights, obtained by the assumption that the inputs and outputs of the training data set are linearly 

related. The number of major PCA dimensions in the data recommends the number of hidden neurons (typically 

five), and the ANN is trained by the conjugate gradient method [7] with algorithms that avoid, and escape, local 

minima. It was found that even ANN with thousands of features could be trained in a matter of few hours on modern 

PC computers, even when the GB algorithm set is operating in the interactive MATLAB environment [8]. One of 

the algorithm set allows the identification of the more relevant features, and previous experience showed that a 

reduced dimensional ANN model is giving better results [9]. In this case, the number of features was small, 39, and 

the trained ANN gave good results, and thus no feature reduction was made.  

  Once a trained ANN is available, it can be analyzed for knowledge extraction. A causal index (CI) algorithm 

was proposed in [10] and found to be very useful in relating each input change influence on the relative magnitude 

and sign changes of each output [11]. The causal index method is an easily, somewhat qualitatively, method for rule 
extraction. The CI is calculated as the sum of the product of all “pathways” between each input to each output,  

              h 

CI = Wkj* Wji        

             
j = 1  

where there are h hidden neurons, Wkj are the connection weights from hidden neuron j to output k, Wji are the 

connection weights between input i to hidden neuron j.  
  Examining the CI for each output as a function of the inputs' number reveals the direction (positive or 

negative) and the relative magnitude of the relationship of the inputs on the particular output. Although somewhat 

heuristic, it is more reliable than local sensitivity checks. Their advantage is that they do not depend on a particular 

input vector, but on the connection weight set that represents all the training input vectors. This is also one of their 

limitations, as a local situation may be lost in the global representation. 

Another useful analysis is to identify clusters in the data, is by training an unsupervised auto-associative 

ANN (AA-ANN), in which the features as presented both as inputs and outputs to the ANN.  As there is no direct 

connections between the inputs and the outputs of the AA-ANN, and if the deviation between the real input feature 

vectors and the “predicted” input features is small, it means that the “binary” hidden neurons outputs are 



representing the essential information in the dataset in order to generate the correct outputs of the ANN model. It 

was found [11] that in a well-trained ANN, the hidden neurons’ output values tend to be close to either one or zero. 

Thus they can be rounded into binary patterns, giving a maximum of 2h possible classes, if h is the number of hidden 

neurons. These “binary” values generate the minimum entropy (or the maximum information content) [12]. Thus, all 

data examples that generate the same hidden neurons output pattern are likely to belong to the same cluster. The 

values of features of each cluster are averaged and then divided by the average of the feature values of the full 
dataset. Feature ratios that are significantly different from unity are those that make each cluster distinct from other 

clusters. More information on the use of these techniques in industrial settings can be found in references [13,14];  

 

4. ANN Model Training and Analyzing 

The saved database, at 5 minutes interval collected in the January-July 2005 period, was cleaned by 

eliminating periods in which the plant operated at less than 100% capacity, or when alternative experimental 

operating policies were tried. In some cases when a process variable is measured by duplicate sensors, their readings 
were combined by averaging. The data were preprocessed by zero centering (subtracting the mean of each feature) 

and unit scaling (dividing by the standard deviation of each feature). The outputs of the ANN (and AA-ANN) 

models were further re-scaled into the [0.1 – 0.9] range. The two numbers of hidden neurons were selected, five and 

six, and the five hidden neurons model was found to give smaller modeling error.  

Initially, the ANN model was trained with the 5 minute data to predict the NOx concentration. When it was 

found by the subsequent trained model analysis that the gas absorption temperature is one of the more important 

operating parameter affecting the NOx emission, an ANN model based on the daily averages was trained, thus 

eliminating the diurnal temperature change effect. 

The 5 minute NOx concentration at the stack modeling results are shown in Figure 1. It can be seen that 

the mean average error between the actual measurements and the ANN model is 0.6%, with a standard deviation of 

6.7%.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: ANN modeling of the 5 minute data. Mean relative error 0.6%, standard deviation 6.7% . Y scale - NOx 

concentration (ppm), blue trace - measurements, red trace ANN model output. X scale – sample number. 

 



 

 

 

The daily average ANN model was trained to give the total NOx emission, and the results are shown in 

Figure 2. The mean model error is 0.006 Kg/Hr NOx, with a standard deviation of 0.61 Kg/Hr.   
            

            

            

            

            
   

 

 

 

 

 

 

 

 

 

 

Figure 2: ANN modeling of the daily average data of total NOx emission. X scale –day number 

Y scale – Total NOx emission (Kg/Hr), blue trace - measurements, 

 red dot ANN model output, Green trace model-plant deviation (Kg/Hr).. 

  

The daily ANN model was analyzed by the Causal Index method. It was found that the NOx amount sent to 
the stack was positively dependant both on the reactor reactant flows, and the absorption tower temperatures. Both 

relationships are consistent with chemical engineering considerations. Some unexpected findings were found by the 

Causal Index values, but the reasons for these findings are explained in the Discussion section. 

AA-ANN was then trained from the 5 minute data, presenting the pre-processed plant features (without the 

NOx measurements) both as inputs and outputs, again with five hidden neurons. After the training, the hidden 

neurons’ outputs were rounded to one or zero, and the all data that had the same “binary” pattern were grouped into 

clusters.    

When the full dataset was used to train the AA-ANN, 28 such clusters were identified, and the feature 

ratios results of the 22 clusters with non-trivial number of examples are shown in Table 1.  

 

 

 

 



                                   Table 1: Feature ratios of the major clusters 

cluster # 1 2 3 4 6 8 9 10 11 12 13 14 

# in cluster 4901 6907 1192 3389 1429 1374 2108 1215 1358 1103 751 1147 

KgNOx/hr 33.07 29.74 30.92 28.56 21.23 23.71 28.96 24.63 26.01 17.89 21.18 28.49 

NFT1105 1.04 1.05 0.97 0.98 0.93 0.95 1.02 0.92 0.92 0.93 0.99 0.92 

NFT1104 1.04 1.05 0.97 0.99 0.93 0.95 1.02 0.92 0.92 0.93 0.99 0.92 

NFT1103 1.04 1.04 0.98 0.98 0.94 0.96 1.02 0.92 0.93 0.94 1.00 0.94 

NFT1102 1.04 1.04 0.98 0.98 0.94 0.96 1.02 0.92 0.93 0.94 0.99 0.94 

NTT1113 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.01 

NTT1112 1.01 1.01 1.01 1.01 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 

NT110050 1.01 1.01 1.00 1.01 0.99 1.00 1.01 0.99 0.99 0.99 1.00 0.99 

NTT11007 1.01 1.01 1.00 1.01 0.99 1.00 1.01 0.99 0.99 0.99 1.00 0.99 

NT110018 1.00 0.99 0.99 0.97 0.97 0.98 1.01 0.97 0.99 0.98 0.99 0.99 

N2RATIO2 0.96 0.95 0.97 0.96 0.97 0.97 0.96 0.97 0.97 0.98 0.97 0.98 

N2RATIO3 1.01 1.00 1.01 1.00 1.01 1.01 1.01 1.01 1.02 1.02 1.01 1.02 

NTT11009 0.99 0.98 0.97 0.96 0.95 0.97 0.99 0.95 0.97 0.95 0.98 0.98 

NFT1205 1.02 1.04 0.99 0.98 0.93 0.94 1.02 0.93 0.93 0.92 0.99 0.94 

NTT1206 0.97 0.98 0.99 0.95 0.93 0.98 1.00 0.98 1.02 0.97 0.96 1.03 

NT110010 0.99 0.98 0.97 0.95 0.93 0.98 0.98 0.94 0.99 0.96 0.98 1.01 

NT110012 0.97 0.96 0.93 0.92 0.90 0.93 0.96 0.92 0.97 0.92 0.96 0.98 

NT110011 0.97 0.96 0.93 0.92 0.90 0.93 0.96 0.92 0.97 0.92 0.96 0.99 

NT110020 0.96 0.92 0.92 0.90 0.90 0.92 0.96 0.94 0.97 0.91 0.95 0.96 

NFT1255 1.11 1.05 1.04 1.00 0.83 0.94 1.01 0.87 0.93 0.71 0.88 1.03 

NPT1252 1.00 1.01 1.00 1.02 0.98 1.03 0.99 0.95 0.98 0.97 0.99 1.02 

NTT1253 0.94 0.89 0.91 0.85 0.88 0.90 0.97 0.92 0.98 0.92 0.96 0.97 

NPDT1250 1.05 1.03 0.97 0.94 1.00 0.87 1.08 0.98 0.91 0.94 1.09 0.85 

NDPX1107 1.04 1.05 0.97 0.96 0.92 0.94 1.02 0.90 0.91 0.92 1.00 0.93 

NAT1133 1.01 0.94 1.00 0.93 0.89 0.80 0.98 1.03 0.98 0.87 0.84 0.92 

NAT1130 0.97 1.03 0.96 1.04 0.89 0.96 0.92 1.00 0.87 0.89 1.00 0.86 

NTT1262 0.91 0.85 0.91 0.79 0.87 0.89 1.01 0.94 1.03 0.93 0.98 0.98 

NLT1258 0.96 0.99 1.02 1.00 1.04 1.04 1.02 1.00 1.04 1.03 1.00 1.06 

NLT1208 0.96 1.01 1.02 1.00 1.03 1.03 1.02 1.03 1.03 1.03 1.03 1.03 

NTT11004 0.91 0.85 0.91 0.79 0.87 0.89 1.01 0.95 1.03 0.94 0.98 0.98 

NT110017 0.97 0.95 0.96 0.92 0.93 0.95 1.01 0.95 1.00 0.97 0.99 0.99 

NTT11005 1.00 1.00 1.00 1.00 0.99 0.99 1.01 0.99 0.99 0.99 1.00 1.00 

NTT701 1.00 1.00 1.00 0.99 0.99 0.99 1.01 0.99 0.99 0.99 1.00 0.99 

NTT702 0.99 0.95 1.03 0.99 1.05 1.01 1.05 1.10 1.08 1.05 1.03 1.05 

NT110046 1.00 0.97 1.00 0.97 1.03 0.97 1.04 1.06 1.03 1.03 1.04 0.97 

NPT603 1.00 1.01 1.00 1.01 0.97 1.02 0.99 0.94 0.96 0.97 0.99 1.00 

NFT1215A 1.03 1.04 0.97 0.98 0.93 0.95 1.01 0.92 0.92 0.93 0.99 0.92 

NPT1101 1.02 1.00 0.98 0.97 0.98 0.96 1.03 0.98 0.99 0.95 1.03 0.98 

NFT1206 1.07 1.09 0.99 1.00 0.95 0.94 1.03 0.92 0.93 0.95 1.01 0.93 

N2NOX 1.12 1.01 1.05 0.97 0.72 0.80 0.98 0.83 0.88 0.61 0.72 0.96 

 

 

 

 

 

 

 



Table 1: Feature ratios of the major clusters (cont.) 

cluster # 15 16 17 18 19 20 21 22 24 25 27 28 

# in cluster 1332 1062 1627 1597 846 2446 1241 5373 345 206 105 12 

KgNOx/hr 25.47 25.15 20.04 34.99 32.84 31.47 33.55 38.13 30.38 40.72 20.16 34.59 

NFT1105 1.03 1.05 1.02 1.05 0.91 1.03 0.92 1.03 1.04 1.04 1.02 0.99 

NFT1104 1.03 1.05 1.02 1.05 0.91 1.03 0.91 1.02 1.04 1.04 1.02 0.99 

NFT1103 1.03 1.05 1.03 1.05 0.91 1.03 0.92 1.02 1.03 1.03 1.02 0.98 

NFT1102 1.04 1.05 1.03 1.05 0.91 1.03 0.92 1.02 1.03 1.03 1.02 0.99 

NTT1113 1.01 1.00 1.01 1.01 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 

NTT1112 1.01 1.00 1.01 1.01 1.00 1.01 1.00 1.00 1.01 1.00 1.00 1.00 

NT110050 0.99 1.00 0.99 1.01 0.96 0.99 0.96 0.99 0.99 1.01 0.98 0.99 

NTT11007 0.99 1.01 0.99 1.01 0.96 0.99 0.96 0.99 0.99 1.01 0.99 0.98 

NT110018 1.03 1.01 1.02 1.02 1.00 1.03 0.99 1.03 1.03 1.03 1.02 1.01 

N2RATIO2 0.96 0.96 0.97 0.96 0.97 0.96 0.96 0.96 0.95 0.95 0.96 0.95 

N2RATIO3 1.01 1.01 1.01 1.01 1.00 1.00 1.00 1.00 0.99 0.99 1.00 0.99 

NTT11009 1.05 0.99 1.02 1.04 1.03 1.06 1.03 1.06 1.05 1.04 1.05 1.03 

NFT1205 1.03 1.06 1.03 1.04 0.94 1.02 0.95 1.05 1.06 1.03 1.04 0.94 

NTT1206 1.06 0.95 1.03 1.04 1.05 1.06 1.03 1.08 1.07 1.05 1.08 0.89 

NT110010 1.05 0.99 1.02 1.04 1.05 1.06 1.04 1.07 1.05 1.03 1.05 1.04 

NT110012 1.09 0.96 1.03 1.09 1.08 1.11 1.07 1.12 1.09 1.08 1.09 1.10 

NT110011 1.09 0.96 1.03 1.09 1.08 1.11 1.08 1.12 1.09 1.08 1.09 1.10 

NT110020 1.11 0.91 1.04 1.07 1.16 1.14 1.16 1.16 1.12 1.09 1.13 1.12 

NFT1255 0.78 0.90 0.65 1.09 1.01 0.96 1.03 1.16 1.19 1.08 0.67 1.00 

NPT1252 1.00 1.01 1.00 1.03 0.98 1.00 1.00 1.02 1.03 1.00 0.99 0.98 

NTT1253 1.14 0.92 1.08 1.10 1.19 1.18 1.17 1.19 1.14 1.11 1.17 1.13 

NPDT1250 1.01 1.02 0.96 1.05 0.95 1.09 0.95 1.00 0.97 1.02 0.97 0.93 

NDPX1107 1.14 1.06 1.09 1.06 0.86 1.04 0.86 1.00 1.00 1.05 1.14 0.97 

NAT1133 1.14 0.93 1.06 1.07 1.17 1.14 1.14 1.12 0.85 1.29 1.08 1.22 

NAT1130 0.96 1.00 1.02 0.92 1.09 1.05 1.11 1.06 1.14 1.15 1.21 1.20 

NTT1262 1.17 0.96 1.11 1.08 1.26 1.21 1.19 1.22 -0.15 10.93 -0.52 48.54 

NLT1258 1.05 1.02 1.01 1.02 0.97 1.01 0.96 0.99 0.90 1.04 1.03 1.02 

NLT1208 1.11 1.03 1.06 1.06 0.91 1.08 0.87 0.93 1.14 1.15 1.21 1.20 

NTT11004 1.16 0.96 1.11 1.08 1.26 1.21 1.19 1.22 1.06 1.07 1.08 1.05 

NT110017 1.07 1.00 1.05 1.04 1.07 1.09 1.05 1.09 1.00 1.02 1.00 1.00 

NTT11005 1.01 1.00 1.00 1.01 0.98 1.01 0.98 1.01 1.00 1.02 1.00 1.00 

NTT701 1.01 1.00 1.00 1.01 0.98 1.01 0.98 1.01 0.88 0.96 1.03 1.07 

NTT702 1.03 0.92 1.00 0.98 1.07 1.04 1.03 0.96 0.95 1.02 1.03 1.06 

NT110046 1.03 0.97 1.01 1.01 1.02 1.04 0.99 0.99 1.03 1.01 1.00 0.97 

NPT603 1.00 1.02 1.01 1.03 0.96 1.01 0.98 1.02 1.04 1.04 1.02 0.97 

NFT1215A 1.03 1.05 1.02 1.04 0.91 1.02 0.92 1.02 1.00 1.05 1.02 1.05 

NPT1101 1.01 0.98 1.01 1.00 1.00 1.03 0.98 1.01 0.98 1.08 0.98 0.95 

NFT1206 1.00 1.07 1.00 1.01 0.85 0.98 0.83 0.97 1.03 1.38 0.68 1.17 

N2NOX 0.86 0.85 0.68 1.18 1.11 1.06 1.13 1.29 1.03 1.38 0.68 1.17 

    

It can be seen that some clusters (# 6, 8, 12, 13, 17, 27) have lower NOx emission amounts, and the 

identification of the feature ratios that are much smaller (or higher) then unity may explain these results. What was 

more surprising was the fact that some of the examples in these clusters are contiguous in time, very close to the 
duration of a complete shift (that is morning, afternoon or night shift). This raises the possibility that some shift 

managers are more efficient in running the plant and thus reducing the NOx emission. 

 

 



5. Discussion 

Reviewing the ANN modeling analysis revealed a major lack of information in the plant data collection 

scheme – no information on the control loop set points values. These are changed by the shift managers, responding 

to plant upsets or transients. As these changes are not recorded, some cause and effects may be mis-understood. For 

instance, if the NOx absorption is seems insufficient, the set point of the absorbing water is increased. Subsequent 

analysis will relate high NOx emission with increased absorption water flow. Thus the daily feature averages is 

much reliable than 5 minute data. 

If the control loop set points changes were available, the insight and experience of the better shift managers 

may be learned and incorporated in the computer control scheme, or at least known to the less experienced shift 

managers. 

The major finding of the ANN modeling, that reducing the absorption tower operating temperature, was not 

helpful to solve the NOx emission issue, because the cooling water supply was outside the control of the plant 

management. Eventually, another NOx reducing technique was successfully adopted.  

 

6. Conclusion 

The ANN modeling of the nitric acid production plant predicted the NOx emission amounts and 

concentration in the tail gas with small errors. The analysis of the ANN and AA-ANN models revealed some 

known, and some previously unknown, relationships in the plant operation. 

The ANN models trained from daily plant feature averages proved more informative than the 5 minute 

data, although it may be the results of the importance of the diurnal temperature changes in this plant. 

The inclusion of the control loop set points in the plant database may provide more information for future 

analysis that will improve the operational knowledge for better efficiency. 
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